Locally factorial integral domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally GCD domains and the ring $D+XD_S[X]$

An integral domain $D$ is called a emph{locally GCD domain} if $D_{M}$ is aGCD domain for every maximal ideal $M$ of $D$. We study somering-theoretic properties of locally GCD domains. E.g., we show that $%D$ is a locally GCD domain if and only if $aDcap bD$ is locally principalfor all $0neq a,bin D$, and flat overrings of a locally GCD domain arelocally GCD. We also show that the t-class group...

متن کامل

Of Integral Domains

The t-class semigroup of an integral domain is the semigroup of the isomorphy classes of the t-ideals with the operation induced by ideal t-multiplication. This paper investigates ring-theoretic properties of an integral domain that reflect reciprocally in the Clifford or Boolean property of its t-class semigroup. Contexts (including Lipman and Sally-Vasconcelos stability) that suit best t-mult...

متن کامل

Class Semigroups of Integral Domains

This paper seeks ring-theoretic conditions of an integral domain R that reflect in the Clifford property or Boolean property of its class semigroup S(R), that is, the semigroup of the isomorphy classes of the nonzero (integral) ideals of R with the operation induced by multiplication. Precisely, in Section 3, we characterize integrally closed domains with Boolean class semigoup; in this case, S...

متن کامل

A Course on Integral Domains

My son who is in the 4 grade is learning about prime numbers and cancelling prime numbers in order to reduce fractions into lowest forms. I have told him that every number (positive integer) can be expressed as a product of primes, and surely along the road, his teachers will confirm this. We will consider this property in integral domains. We say that a divides b in the domain R, and write a |...

متن کامل

Factorization in Integral Domains II

Theorem 1.1 (Rational roots test). Let f = anx n + · · · + a0 ∈ Z[x] be a polynomial of degree n ≥ 1 with integer coefficients and nonzero constant term a0, and let p/q ∈ Q be a rational root of f such that the fraction p/q is in lowest terms, i.e. gcd(p, q) = 1. Then p divides the constant term a0 and q divides the leading coefficient an. In particular, if f is monic, then a rational root of f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1984

ISSN: 0021-8693

DOI: 10.1016/0021-8693(84)90214-x